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Levels of automated driving
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LEVEL

1 Driver Assistance

LEVEL

2 Partial Automation

LEVEL

3 Conditional Automation

LEVEL

4 High Automation

LEVEL

5 Full Automation

Advanced Driver Assistance 

(e.g. Tesla Autopilot)

Robo-taxis, robo-delivery, …
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IMPLEMENTING AUTOMATED DRIVING
THE FLOW

SENSORS

LIDAR

ULTRASONICCAMERA

RADAR

OFFLINE MAPS

REAL-TIME
PERCEPTION

PATH PLANNING
&

ACTUATION
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Deep learning is used in the best perception 
systems for automated driving

4

Chris Urmson, CEO of Aurora: With deep learning, an engineer can accomplish in one day what would 
take 6 months of engineering effort with traditional algorithms.[1]

Dmitri Dolgov, CTO of Waymo: "Shortly after we started using deep learning, we reduced our error-rate 
on pedestrian detection by 100x."[3]

Andrej Karpathy, Sr Director of AI at Tesla: "A neural network is a better piece of code than anything 
you or I could create for interpreting images and video."[2]

[1] https://www.nytimes.com/2018/01/04/technology/self-driving-cars-aurora.html
[2] https://medium.com/@karpathy/software-2-0-a64152b37c35
[3] https://medium.com/waymo/google-i-o-recap-turning-self-driving-cars-from-science-fiction-into-reality-with-the-help-of-ai-89dded40c63

180x higher productivity with deep learning

100x fewer errors with deep learning

Deep learning has become the go-to approach
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Diverse Applications of Deep Learning for Computer Vision

[1] O. Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015.

[2] M. Cordts et al. The Cityscapes Dataset for Semantic Urban Scene Understanding. CVPR, 2016.

[3] Casser, Vincent et al. Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised Learning from Monocular Videos. AAAI, 2018

[4] Liang, Ming, et al. Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR, 2019.

[5] Ilg, Eddy, et al. Flownet 2.0: Evolution of optical flow estimation with deep networks. CVPR. 2017.

[6] Bewley, Alex, et al. Simple online and realtime tracking. IEEE ICIP, 2016.

Image → Scalar or Vector Image → Image Image → Boxes Video 

Image Classification

Semantic Segmentation [2] 2D Object Detection [4] Optical Flow [5]

Image Classification [1] Depth Prediction [3] 3D Object Detection [4] Object Tracking [6]
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We don't just need deep learning…
We need efficient deep learning
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Audi
https://www.slashgear.com/man-vs-machine-my-rematch-
against-audis-new-self-driving-rs-7-21415540/

BMW + Intel
https://newsroom.intel.com/news-releases/bmw-
group-intel-mobileye-will-autonomous-test-vehicles-
roads-second-half-2017/

Waymo
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We don't just need deep learning…
We need efficient deep learning
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Trunkloads of servers cause problems:
• Limited trunk space
• Cost
• Energy usage
• Reduced EV battery range
• Lower reliability
• Massive heat dissipation
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From high-end hardware to affordable 
hardware
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• 1 to 30 watts (for chip + memory + I/O)
• 10s of dollars
• 1s of TOPS/s

• 30 to 500 watts
• 500s-5000s+ of dollars
• 10s-100s of TOPS/s
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Tradeoffs for deployable DNN models
for automotive deep learning practitioners

9

Low 
Development

Cost

Low 
Compute 
Resource 

Usage
Low Error 

Benchmark-winning
off-the-shelf DNNs

Under-provisioned 
less-accurate DNNs

Manually design a new DNN from scratch
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Neural Architecture Search (NAS) to the Rescue
NAS can co-optimize resource-efficiency and accuracy
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Low 
Development

Cost

Low 
Compute 
Resource 

Usage

Neural 
Architecture 

Search
(NAS)

Low Error 

Under-provisioned 
less-accurate DNNs

Manually design a new DNN from scratch

Benchmark-winning
off-the-shelf DNNs
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What's in the design space of 
Deep Neural Networks for computer vision?
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Anatomy of a convolution layer
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IMPORTANT TO KNOW: MULTIPLE CHANNELS AND MULTIPLE FILTERS

filterW

fil
te

rH

da
ta

H

dataW

ch
annels

ch
annels

The number of channels in the 

current layer is determined by 

the number of filters (numFilt) 

in the previous layer.

x numFilt

x batch size
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Recent history of DNN design for computer vision

13 * Top-1 single-model, single-crop accuracy 

DNN Year Accuracy* 
(ImageNet-1k)

Parameters (MB) Computation (GFLOPS 
per frame)

Key Techniques

AlexNet 2012 57.2% 240 1.4 Applying a DNN to a hard problem; 
ReLU; more depth (8 layers)

VGG-19 2014 75.2% 490 19.6 More depth (22 layers)

ResNet-152 2015 77.0% 230 22.6 More depth & residual connections

SqueezeNet 2016 57.5% 4.8 0.72 Judicious use of filters and channels

MobileNet-v1 2017 70.6% 16.8 0.60 1-channel 3x3 convolutions

ShuffleNet-v1 2017 73.7% 21.6 1.05 Shuffle layers

ShiftNet 2017 70.1% 16.4 … Shift layers

SqueezeNext 2018 67.4% 12.8 1.42 Oblong convolution filters

mNasNet-A3 2018 76.1% 20.4 0.78 Neural architecture search

FBNet-C 2018 74.9% 22.0 0.75 Really fast neural architecture search
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1. Kernel Reduction

14

REDUCING THE HEIGHT AND WIDTH OF FILTERS

While 1x1 filters cannot see outside of a 1-pixel radius, they retain the ability to combine and reorganize 

information across channels.

In our design space exploration that led up to SqueezeNet, we found that we could replace half the 3x3 

filters with 1x1's without diminishing accuracy

A "saturation point" is when adding more parameters doesn't improve accuracy.

3

3

c
h
a
n
n
e
ls

x numFilt

1

1

c
h
a
n
n
e
ls

x numFilt
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2. Channel Reduction
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REDUCING THE NUMBER OF FILTERS AND CHANNELS

If we halve the number of filters in layer Li
this halves the number of input channels in layer Li+1

4x reduction in number of parameters

3

3
256

x numFilt

3

3

128

x numFilt

OLD layer Li+1 NEW layer Li+1
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3. Depthwise Separable Convolutions

16

ALSO CALLED: "GROUP CONVOLUTIONS" or "CARDINALITY"

Popularized by MobileNet and ResNeXt

3

3

256

x numFilt

3

3

x numFilt

Each 3x3 filter has 1 channel
Each filter gets applied to a different channel of the input
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4. Shuffle Operations
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After applying aggressive kernel reduction, we may 
have 50-90% of the parameters in 1x1 convolutions

Group-1x1 convs would lead to multiple DNNs that don't 
communicate

Solution: shuffle layer after separable 1x1 convs

"shuffle" layer

Zhang, et al. ShuffleNet: An Extremely Efficient Convolutional Neural Network for 
Mobile Devices. arXiv, 2017.
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5. Shift Operations
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Shift each channel's activation grid by one cell

This allows all your filters to be 1x1xChannels 

(and not 3x3)

"shift" layer

[1] B. Wu, et al. Shift: A Zero FLOP, Zero Parameter Alternative to Spatial 

Convolutions. CVPR, 2018.
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Device-specific DNN design
considerations
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Deep Learning Processors have arrived!

20

[1] https://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v05.pdf
[2] http://www.nvidia.com/content/PDF/Volta-Datasheet.pdf (PCIe version)

THE SERVER SIDE

Uh-oh… Processors are improving much faster than Memory.

Platform Computation
(GFLOPS/s)

Memory 
Bandwidth

(GB/s)

Computation-
to-bandwidth 

ratio

Power 
(TDP Watts)

Year

NVIDIA K20 [1] 3500
(32-bit float)

208
(GDDR5)

17 225 2012

NVIDIA V100 [2] 112000
(16-bit float)

900
(HBM2)

124
(yikes!)

250 2018
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Deep Learning Processors have arrived!
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[1] https://indico.cern.ch/event/319744/contributions/1698147/attachments/616065/847693/gdb_110215_cesini.pdf
[2] https://www.androidauthority.com/huawei-announces-kirin-970-797788
[3] https://blogs.nvidia.com/blog/2018/01/07/drive-xavier-processor/
[4] https://developer.nvidia.com/jetson-xavier

MOBILE PLATFORMS
Device Cores Computation

(GFLOPS/s)
Memory 

Bandwidth 
(GB/s)

Computation-
to-bandwidth 

ratio

System 
Power 

(TDP Watts)

Year

Samsung 
Galaxy Note 3

Arm Mali T-
628 GPU [1] 120

(32-bit float)
12.8
(LPDDR3)

9.3 ~10 2013

Huawei P20 Kirin 970 NPU 
[2] 1920

(16-bit float)
30
(LPDDR4X)

64
(ouch!)

~10 2018

NVIDIA Jetson 
Xavier [3,4]

NVIDIA 
Tensor Cores 30000

(8→32 int)
137 218

(yikes!)
10 to 30
(multiple 
modes)

2018
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What will the next generation Deep Learning servers 
look like?

22

https://medium.com/@shan.tang.g/a-list-of-chip-ip-for-deep-learning-48d05f1759ae
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What will the next generation Deep Learning servers 
look like?

23

20 TOP/W COMPUTATION

[1] https://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v05.pdf
[2] http://www.nvidia.com/content/PDF/Volta-Datasheet.pdf (PCIe version)
[3] https://www.eteknix.com/gddr6-hbm3-details-emerge/

* Assuming half the power is spent on computation, and the other half is spent on memory and other devices. 
20 TOP/s/W * 20W * 0.5 = 2500 TOP/s

Platform Efficiency 
(TOP/s/W)

Computation
(TOP/s)

Memory 
Bandwidth

(TB/s)

Computation-to-
bandwidth ratio

Power 
(TDP Watts)

Year

NVIDIA K20 
[1]

0.015 3.50
(32-bit float)

0.208
(GDDR5)

17 225 2012

NVIDIA V100 
[2]

0.45 112
(16-bit float)

0.900
(HBM2)

124 250 2018

Next-gen:
20 TOP/W 

20 2500* 1.800
(HBM3) [3]

1389
(oh no!)

250 2020 
(est.)
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Summary: Device-specific DNN design 
considerations

24

• Processors have recently increased 10-100x in dense-matrix computation-per-
watt. 

• But, DRAM memory bandwidth is increasing slowly (2x more bandwidth-per-watt 
every 4 years).
• So, we need DNNs with cache-locality that don't need frequent DRAM accesses
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Related work on 
Neural Architecture Search
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Hyperparameter Optimization Methods
• Grid Search

• Exhaustively search user-defined space

• Random search
• Try random combinations

• Bayesian optimization
• Try to infer a probabilistic model
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Neuroevolution: from 
architectures to 
learning[1]

Paper from 2008 gives an overview of work 
on evolutionary methods for NN 
architecture design and initialization.

“In order to design a neural network for a 
particular task, the choice of an 
architecture (including the choice of a 
neuron model), and the choice of a 
learning algorithm have to be addressed”

“This paper gives an overview of the most 
prominent methods for evolving NNs 
with a special focus on recent advances in 
the synthesis of learning architectures.”

[1] Floreano, D., Dürr, P., & Mattiussi, C. (2008). Neuroevolution: from 
architectures to learning. Evolutionary Intelligence, 1(1), 47-62.
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NAS with Reinforcement 
Learning
Block-level search [1]

• Use a Recurrent Neural Network in a RL 
loop to generate entire child network for 
the CIFAR dataset updating after each 
model has trained

• Achieved 0.09% better accuracy at the 
time and 1.05x faster on CIFAR-10

• 800 Nvidia K40 GPUs for 28 days =   
22,400 GPU Days

• Search performed on small dataset

• Better than brute force approach but still 
too much compute too be practical

[1] B. Zoph, Q. Le. Neural Architecture Search with 
Reinforcement Learning. ICLR, 2018.
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• Use a Recurrent Neural Network in a 
RL loop to generate cells using CIFAR-
10 as proxy task then adapted to 
ImageNet

• Achieved 1.20% better accuracy while 
being 28% faster on ImageNet1000

• 500 Nvidia P100 GPUs for 4 days = 
2,000 GPU Days

• cells are all the same (unlike [1])

• More efficient than previous method 
but still expensive

[1] B. Zoph, Q. Le. Neural Architecture Search with 
Reinforcement Learning. ICLR, 2018.

[2] B. Zoph et al. Learning Transferable Architectures 
for Scalable Image Recognition. CVPR, 2018.

Learning Transferable 
Architectures
Cell-level search [2]
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Other Related Work
• Evolutionary Method

• AmoebaNet[1]
• Tournament Selection Evolutionary on Cell Space 
• 3,150 K40 GPU Days

• Latency Aware Reinforcement Learning
• MnasNet[2]

• Latency Aware Block level Search 
on proxy ImageNet 

• 288 TPUv2 Days  ≈ 2,000 P100 GPU Days

• Supernetwork - Differential Search
• DARTS: Differential ARchitecTure Search[3]

• Gradient Based Cell Search performed 
on CIFAR-10

• 4 1080 TI GPU Days

[1] E. Real et al. Regularized Evolution for Image Classifier Architecture Search. AAAI, 2019.
[2] M. Tan et al. MnasNet: Platform-Aware Neural Architecture Search for Mobile. CVPR, 2019.
[3] H. Liu et al. DARTS: Differentiable Architecture Search. ICLR, 2019.
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Stochastic Supernet 
Optimization
FBNet [3]
• Creates Stochastic Supernet which 

contains entire architecture Search space. 
Only has to train this one meta-network 
instead of many child networks.

• Uses Gumbel-Softmax to sample from 
categorical distribution for layer choices 
weighted by learnable parameters

• Uses a Latency Look Up Table(LUT) to 
estimate and optimize network latency

• FBNet-B achieved MobileNetV2-1.3 
Accuracy while being 1.5x lower latency

• 9 P100 GPU Days Search Cost

• Search Space inspired by MobilenetV2
[3] Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., ... 
& Keutzer, K. (2019). FBNet: Hardware-aware efficient 
convnet design via differentiable neural architecture 
search. CVPR, 2019.
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Applying NAS to design DNNs for semantic 
segmentation
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Classification vs Semantic Segmentation tasks

Examples of image classification (ImageNet[1]) Example of Semantic Segmentation (Cityscapes[2])

• Image level prediction
• Location Invariant
• Low Resolution (224x224 input)
• SOTA Networks compute: ~10 GFLOPs

• Pixel level prediction
• Location Variant
• High Resolution (1024x2048 input)
• SOTA Networks range: ~1 TFLOPS

[1] O. Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015.
[2] M. Cordts et al. The Cityscapes Dataset for Semantic Urban Scene Understanding. CVPR, 2016.
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Classification vs Semantic Segmentation DNNs

Examples DNN for image classification Example DNN for Semantic Segmentation (DeepLabV3[1])

[1] LC. Chen et al. Rethinking Atrous Convolution for Semantic Image Segmentation, 2017.

• Networks designed for task and are trained 

from scratch

• SS Networks are adapted from classification 

networks and then retrained.
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Applying NAS to design DNNs for semantic 
segmentation

• We need a network that runs in realtime on our automotive grade 
platform that gets as high of a performance as we can on our 
target task.

• Goal: advance the frontier of accuracy/efficiency on Semantic 
Segmentation 
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SqueezeNAS: An Adaptation of FBNet for 
Semantic Segmentation Search

• Stochastic Super Network

• Run all units in parallel 

• Perform weighted sum of activations where weights are 

sampled from Gumbel-Softmax

• 2 types of learned parameters: Convolution parameters 

and architecture parameters

• Resource aware learned architecture parameter

• A unit in the meta-network is chosen by its architecture 

parameter plus a random variable

• Optimize model-parameters and architecture-parameters 

simultaneously

• Proxyless training

• We train directly on Cityscapes training set

• Training until both model-parameters and architecture-

parameters converge

Figure courtesy of Bichen Wu, et al.
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Training scheme

37

SuperNetwork 
Training on 

ImageNet-100
(classification)

Select best DNNs; 
train them on 
ImageNet-1k

(classification)

FBNet training flow

SuperNetwork 
Training on 

Cityscapes Fine
(segmentation)

Select best DNNs;
train them on 
ImageNet-1k

(classification)

SqueezeNAS training flow

Finetune on 
COCO

(segmentation)

Finetune on 
Cityscapes Coarse

(segmentation)

Finetune on 
Cityscapes Fine
(segmentation)

Sample candidate 
networks from 
SuperNetwork

Evaluate 
candidates on 
ImageNet-100 
Validation set

Sample candidate 
networks from 
SuperNetwork

Evaluate 
candidates on 

Cityscapes Fine 
Validation set
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SqueezeNAS: Cityscapes Results

Enet[1]

CCC2[2]

EDANet[3]

MobileNetV2[4]

SqueezeNAS-3.5

SqueezeNAS-9

SqueezeNAS-23

Name MACs 
(Billions)

Class mIOU on 
Cityscapes

SqueezeNAS-3 3.0 66.7

SqueezeNAS-9 9.4 72.4

SqueezeNAS-22 21.8 74.5

Enet[1] 4.4 58.3

CCC2[2] 6.3 62.0

EDANet[3] 9.0 65.1

MobileNetV2 

OS=16[4]

21.3 [5] 70.7 [5]

CCC DRN A50[6] 68.7 67.6

CCC DRN A50[6]

[1] Paszke, Adam et al. ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, 2016 

[2] Park, Hyojin et al. Concentrated-Comprehensive Convolutions for lightweight semantic segmentation, 2018

[3] Lo, Shao-Yuan et al. Efficient Dense Modules of Asymmetric Convolution for Real-Time Semantic Segmentation, 2018

[4] Sandler, Mark et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018.

[5] https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md

[6] Yu, Fisher et al. Dilated Residual Networks, CVPR 2017.



Edit Master text styles
Second level

Third level
Fourth level

Fifth level

39

SqueezeNAS: Cityscapes Results 
Name Search 

Goal
MACs 

(Billions)
Latency (ms)

on NVIDIA
Xavier

Class mIOU on 
Cityscapes

SqueezeNAS-3 MACs 3.0 46.0 66.7

SqueezeNAS-9 MACs 9.4 103 72.4

SqueezeNAS-22 MACs 21.8 156 74.5

Name Search 
Goal

MACs 
(Billions)

Latency (ms)
on NVIDIA 

Xavier

Class mIOU 
on 

Cityscapes

SqueezeNAS-4.5 v2 Latenc
y

4.5 34.6 68.0

SqueezeNAS-20 v2 Latenc
y

19.6 98.3 73.6

SqueezeNAS-33 v2 Latenc
y

32.7 153 75.1
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SqueezeNAS

We employ the encoder-decoder depthwise head from DeepLab 

V3+[1] while allowing the base network to be completely learned

[1] Chen et al. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation, ECCV 2018

Search 
Space
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Search 
Space

Expansion 6

Expansion 3

Expansion 1

Expansion 1
(grouped conv)

3x3 3x3 
dilated

5x5 skip
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Dilated Convolutions
(also known as Atrous Convolution)

Normal 3x3 Convolution Dilated 3x3 Convolution

Graphic taken from Sik-Ho Tsang’s article https://towardsdatascience.com/review-dilated-convolution-semantic-segmentation-9d5a5bd768f5
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Resulting 

Networks

Legend

(Unit Type)
1x1->unit->1x1

MobileNetV2

Classification

MobileNetV2

DeepLabV3

SqueezeNAS-3
(MAC Optimized)

SqueezeNAS-4.5 v2

(Latency Searched)

SqueezeNAS-22
(MAC Optimized)

3x3 3x3 dilated 5x5
3x3

downsample

5x5 
downsample

MACs

(Giga)

mIOU

%

21.3 70.71

3.0 66.7

4.5 68.0

21.8 74.5

32.7 75.1

Box Width 
represents channel 

expansion

SqueezeNAS

skip

SqueezeNAS-33 v2

(Latency Optimized)
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SqueezeNAS: Search Time Results

Name NAS 
Method

Search Time 
(GPU Days)

Dataset Searched on 

SqueezeNAS-3 gradient 7 Cityscapes

SqueezeNAS-9 gradient 11 Cityscapes

SqueezeNAS-23 gradient 14 Cityscapes

Neural Architecture Search with Reinforcement Learning RL 22,400 CIFAR-10

NASNet RL 2,000 CIFAR-10

mNasNet RL 2,000* Proxy ImageNet

AmoebaNet genetic 3,150 CIFAR-10

FBNet gradient 9 Proxy ImageNet

DARTS gradient 4 CIFAR-10

* Approximated from TPUv2 Hours
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Conclusions
• Deep learning applications, and their computing platforms, are more diverse 

than ever, necessitating the design of many new DNNs

• Good news! Neural Architecture Search (NAS) is 100-1000x more efficient today 
than it was 2 years ago

• SqueezeNAS has achieved a new speed vs accuracy curve created for Semantic 
Segmentation on an automotive-grade platform

• Some architecture patterns follow human intuition and some don't
• We can learn new design paradigms from NAS

• Moving up a level of abstraction: Researchers can now design Neural 
Architecture search spaces instead of individual networks


